34 research outputs found

    Development and management of high-fidelity test technology for comprehensive performance evaluation of electronic warfare systems in multi-threat environments.

    Get PDF
    This thesis addresses the key challenge of improving multi-threat RF environment simulator capability and fidelity to the level where most, if not all electronic warfare receiver performance could be adequately proven on ground-based test facilities rather than by expensive and difficult to repeat flight trials. For over 25 years the author has investigated his claim that this could be achieved, enabled by suitably enhanced RF threat simulators. The author’s technology development and management leadership has significantly influenced high-fidelity, multi-threat RF emitter scenario simulation capabilities during this period. The published works and this thesis demonstrate this claim to be justified via the many simulator technology developments he has managed to fruition, those many potential enhancements he has identified, and four further research directions he has proposed. Many prior limitations have been overcome by technological developments and the author considers it likely that most remaining ones will be overcome within the next decade, leaving only those receiver performance verification tests that can only be done in flight to be done via flight test. When taken as a whole, the 12 published works represent a significant contribution to the body of aerospace knowledge across the domains of survivability, electronic warfare systems and their test and evaluation, and radio/radar frequency threat simulation. Synthesis of those works demonstrates a coherent theme that links improved multi-threat RF environment simulation capability to more affordable, shorter and less risky receiver development programmes, which thereby also offers improved air platform survivability. The key importance of defence sector affordability is also recognised via development, described in the thesis, of a technology prioritisation assessment method to aid decision making on threat simulation fidelity enhancements. Originality is also demonstrated in the works’ and this thesis’ development of public release reference material in the sensitive topic area of electronic warfare and test and evaluation, for the education of novices of graduate level and upwards, for the advisement of technical professionals, experienced testers and academics, and for the guidance of programme managers

    Radiative forcing and climate change

    Get PDF
    Aviation causes climate change as a result of its emissions of CO2, oxides of nitrogen, aerosols, and water vapor. One simple method of quantifying the climate impact of past emissions is radiative forcing. The radiative forcing due to changes in CO2 is best characterized, but there are formidable difficulties in estimating the non-CO2 forcings – this is particularly the case for possible aviation-induced changes in cloudiness (AIC). The most recent comprehensive assessment gave a best estimate of the 2005 total radiative forcing due to aviation of about 55–78 mW m−2 depending on whether AIC was included or not, with an uncertainty of at least a factor of 2. The aviation CO2 radiative forcing represents about 1.6% of the total CO2 forcing from all human activities. It is estimated that, including the non-CO2 effects, aviation contributes between 1.3 and 14% of the total radiative forcing due to all human activities. Alternative methods for comparing the future impact of present-day aviation emissions are presented – the perception of the relative importance of the non-CO2 emissions, relative to CO2, depends considerably on the chosen method and the parameters chosen within those methods

    An investigation of the microwave upset of avionic circuitry

    Get PDF
    Circuit technology of the 1970-90 era appears fairly resilient to microwave radio frequency interference, with few reported occurrences of interference. However, a proposition has been developed which substantiates fears that new technologies, with their extremely high packing densities, small device p-n junctions and very high clock rates, will be very susceptible to interference throughout the microwave band It has been postulated that the mechanism for this upset is demodulation and that it will come about by either the predicted changes in the microwave RF environment by the year 2000, or by a suitable choice of phasing and frequency at high power. The postulation is studied by developing an overall ingress equation, relating incident power density at the aircraft to the load voltage at an avionic circuit component. The equation's terms are investigated to quantif' their contribution to the likelihood of interference. The operational RF environment for aircraft is studied and predictions of the current and maximum future environments are made. A practical investigation of 2-18 GH.z airframe shielding is described, with comparison of the results with those from a number of other aircraft and helicopter types. A study of ingress into avionic boxes is presented and is followed by the results of an investigation of energy coupling via the cables and connectors, including the development and practical examination of a coupling model based on transmission line theory. A study is then presented of circuit technology developments, electronic component interference and damage mechanisms, and evidence of upset of electronic equipment is given. Investigations show that there is more 1-18 GHz upset of electronic equipment than originally thought and data suggest that thermal damage of active devices may dominate over-voltage stressing of p-n junctions. Aircraft investigations have shown that incident microwave radiation is attenuated approximately 20 dB by the airframe, in a complex fashion which does not lend itself to being modelled easily. Under some conditions this value of airframe attenuation is seen to approach zero, removing any shielding of avionics by the airframe for these cases. A predictor for airframe shielding independent of air vehicle type has been developed, based on cumulative density ftrnctions of all data from each of the aircraft types examined. The cable coupling model gives good agreement with measured data except for the dependency of load voltage on cable length and illuminating antenna position along the cable, for which an empirical equation has been developed. Computer power limitations and significant variations of most of the parameters in the overall ingress equation suggest that modelling of the complex innards of aircraft and avionics at these frequencies will remain impractical for the foreseeable future and that probabilistic models are the only achievable goal. It is concluded that all avionic circuit technologies may well be upset as postulated above or by speculative High Power Microwave weapons, but that careful use of existing aircraft and equipment design methodologies can offer adequate protection. An improved protection regime is proposed for future aircraft and a number of fUture research areas are identified to enable better understanding of the microwave hazard to aircraft. The three areas which will add most to this understanding are modelling of the precise microwave environment to be encountered, further airframe shielding measurements and analyses, from all incidence angles and on different aircraft types, and the construction and cumulative probability fUnction analyses of electronic component and equipment upset databases

    Compton Scattering from \u3csup\u3e4\u3c/sup\u3eHe at 61 MeV

    Get PDF
    The Compton scattering cross section from 4He has been measured with high statistical accuracy over a scattering angle range of 40∘−159∘ using a quasimonoenergetic 61-MeV photon beam at the High Intensity Gamma-Ray Source. The data are interpreted using a phenomenological model sensitive to the dipole isoscalar electromagnetic polarizabilities (αs and βs) of the nucleon. These data can be fit with the model using values of αs and βs that are consistent with the currently accepted values. These data will serve as benchmarks of future calculations from effective field theories and lattice quantum chromodynamics

    Does agri-environmental management enhance biodiversity and multiple ecosystem services?: A farm-scale experiment

    Get PDF
    Agri-environmental management has been promoted as an approach to enhance delivery of multiple ecosystem services. Most agri-environment agreements include several actions that the farmer agrees to put in place. But, most studies have only considered how individual agri-environmental actions affect particular ecosystem services. Thus, there is little understanding of how the range of agri-environmental actions available to a farmer might be deployed on any individual farm to enhance multiple services. To address this knowledge gap, we carried out an experimental study in which we deployed a set of agri-environmental actions on a commercial farm in southern England. Agri-environmental actions comprised wildflower margins and fallow areas in arable fields, creating and enhancing grassland with wildflowers, and digging ponds. Alongside biodiversity responses, we measured effects on a number of ecosystem services: pollination, pest control, crop and forage yield, water quality, climate regulation and cultural services. Wildflower margins enhanced invertebrates, pest control and crop yield, and aesthetic appeal. A greater number of pollinators was linked to enhanced oilseed rape yield. But these margins and the fallows did not prevent run-off of nutrients and sediment into waterways, and showed limited carbon sequestration or reduction of greenhouse gas emissions. Newly-dug ponds captured large amounts of sediment and provided aesthetic appeal. Grasslands had higher soil carbon content and microbial biomass, lower N20 emissions, and net sequestration of carbon compared to arable land. Enhancement of grassland plant diversity increased forage quality and aesthetic appeal. Visitors and residents valued a range of agri-environmental features and biodiversity across the farm. Our findings suggest one cannot necessarily expect any particular agri-environmental action will enhance all of a hoped-for set of ecosystem services in any particular setting. A bet-hedging strategy would be for farmers to apply a suite of options to deliver a range of ecosystem service benefits, rather than assuming that one or two options will work as catch-all solutions

    Addressing pollination deficits in orchard crops through habitat management for wild pollinators

    Get PDF
    There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers

    Glastir Monitoring & Evaluation Programme. First year annual report

    Get PDF
    The Welsh Government has commissioned a comprehensive new ecosystem monitoring and evaluation programme to monitor the effects of Glastir, its new land management scheme, and to monitor progress towards a range of international biodiversity and environmental targets. A random sample of 1 km squares stratified by landcover types will be used both to monitor change at a national level in the wider countryside and to provide a backdrop against which intervention measures are assessed using a second sample of 1 km squares located in areas eligible for enhanced payments for advanced interventions. Modelling in the first year has forecast change based on current understanding, whilst a rolling national monitoring programme based on an ecosystem approach will provide an evidence-base for on-going, adaptive development of the scheme by Welsh Government. To our knowledge, this will constitute the largest and most in-depth ecosystem monitoring and evaluation programme of any member state of the European Union

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies
    corecore